基于人工智能的现代化新员工培训模式构建
DOI:
CSTR:
作者:
作者单位:

中国民航信息网络股份有限公司重庆分公司 重庆 400021

作者简介:

罗鑫(1979—),本科,中级经济师,研究方向为企业人力资源管理。

通讯作者:

中图分类号:

TP399

基金项目:


Constructing A Modern New Employee Training Model Based on Artificial Intelligence
Author:
Affiliation:

Travelsky Technology Limited,Chongqing Branch,Chongqing 400021 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着人工智能时代的到来,企业对新员工入职培训的效果与成本控制愈加重视,同时Z世代员工日益突出的个性化学习偏好和对互动性、参与感强的培训体验的高需求,使得传统的入职培训模式已难以满足当下企业的需求。人工智能技术的快速发展为企业提供了应对这些挑战的新思路。文中基于大模型智能体技术,设计了一种融合传统在线培训平台与现代智能元素的新员工培训模式。该模式能实现即时的问题解答、学习进度验收以及实践结果认证,不仅可以提升新员工的学习效率和参与度,还能有效降低企业培训成本,为企业构建一个更加灵活、高效且契合Z世代员工培训需求的现代化培训体系。

    Abstract:

    With the advent of the era of artificial intelligence, enterprises pay more and more attention to the effect and cost control of new employee induction training. At the same time, Generation Z employees increasingly prominent personalized learning preferences and high demand for interactive and participatory training experiences make traditional induction training models difficult to meet the needs of todays enterprises. The rapid development of artificial intelligence technology provides enterprises with new ideas to deal with these challenges. Based on large-scale agent technology, this paper designs a new employee training model that integrates traditional online training platforms and modern intelligent elements.This model can achieve instant question answering, learning progress acceptance, and practice result certification, which can not only improve the learning efficiency and participation of new employees, but also effectively reduce the training cost of enterprises, and build a more flexible, efficient, and modern training system that meets the training needs of Generation Z employees.

    参考文献
    相似文献
    引证文献
引用本文

罗鑫,陈涌均,卢晓燕,任还,马燕.基于人工智能的现代化新员工培训模式构建[J].移动信息,2025,47(2):217-219.
[author_e n_name]. Constructing A Modern New Employee Training Model Based on Artificial Intelligence[J].,2025,47(2):217-219.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-19
  • 出版日期:
文章二维码
关闭