基于人工智能的质检系统设计与实现
DOI:
CSTR:
作者:
作者单位:

广州华立学院 广州 510000

作者简介:

郭泽辉(1985—),硕士,助教,研究方向为计算机科学与应用。

通讯作者:

中图分类号:

TP311

基金项目:


Design and Implementation of Quality Inspection System Based on Artificial Intelligence
Author:
Affiliation:

Guangzhou Huali College,Guangzhou 510000 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    随着制造业的快速发展,产品质量检测成为确保产品性能和客户满意度的关键环节。然而,传统的质检方法依赖于人工检测,存在检测效率低、误判率高等问题。为解决这些问题,文中设计了一种基于人工智能的质检系统。首先,通过分析质检过程中的痛点和需求,提出了质检系统的设计思路。其次,详细介绍了系统的工作流程和关键技术,如数据采集、图像处理和缺陷识别等。在深度学习算法的支持下,系统能对检测数据进行特征提取和模式识别,从而实现自动化的质量检测。最后,对质检系统进行实验评估。结果表明,该系统具有较高的检测准确性和效率,能有效提升质检过程的自动化水平。

    Abstract:

    With the rapid development of manufacturing industry, product quality testing has become a key link to ensure product performance and customer satisfaction. However, traditional quality inspection methods often rely on manual testing, which has problems such as low detection efficiency and high misjudgment rate. To address these issues, this paper proposes a quality inspection system based on artificial intelligence. Firstly, by analyzing the pain points and requirements in the quality inspection process, the design concept of the quality inspection system is proposed. Secondly, the workflow and key technologies of the system were detailed, such as data acquisition, image processing, and defect recognition. With the support of deep learning algorithms, the system is able to extract features and recognize patterns from detection data, thereby achieving automated quality inspection. Finally, conduct experimental evaluation on the quality inspection system. The results indicate that the system has high detection accuracy and efficiency, and can effectively improve the automation level of the quality inspection process.

    参考文献
    相似文献
    引证文献
引用本文

郭泽辉.基于人工智能的质检系统设计与实现[J].移动信息,2025,47(2):226-228.
[author_e n_name]. Design and Implementation of Quality Inspection System Based on Artificial Intelligence[J].,2025,47(2):226-228.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-19
  • 出版日期:
文章二维码
关闭