人工智能视域下工业大模型优化的路径研究
DOI:
CSTR:
作者:
作者单位:

山东捷瑞数字科技股份有限公司 山东 烟台 264003

作者简介:

安士才(1980—),硕士,工程师,研究方向为人工智能。

通讯作者:

中图分类号:

TP391

基金项目:


Research on the Path of Industrial Model Optimization from the Perspective of Artificial Intelligence
Author:
Affiliation:

Shandong Jierui Digital Technology Co.,Ltd.,Yantai,Shandong 264003 ,China

Fund Project:

  • 摘要
  • |
  • 图/表
  • |
  • 访问统计
  • |
  • 参考文献
  • |
  • 相似文献
  • |
  • 引证文献
  • |
  • 资源附件
  • |
  • 文章评论
    摘要:

    人工智能技术的快速发展为工业领域带来了深刻变革,工业大模型作为新一代人工智能技术的重要载体,在推动工业智能化转型中发挥关键作用。针对工业大模型在实际应用中存在的数据质量参差、模型泛化能力不足、算力资源受限等问题,文中从数据层面、模型架构、计算优化和部署应用4个维度探讨了优化路径。通过分析工业场景特征,提出了基于领域知识的数据增强方法、轻量化模型裁剪策略、分布式训练加速方案和边缘智能部署框架,为提升工业大模型性能和应用效果提供了新思路。

    Abstract:

    The rapid development of artificial intelligence technology has brought profound changes to the industrial field, and industrial large-scale models, as an important carrier of the new generation of artificial intelligence technology, play a key role in promoting the transformation of industrial intelligence. In response to the problems of uneven data quality, insufficient model generalization ability, and limited computing resources in the practical application of industrial large-scale models, this paper explores the optimization path from four dimensions: data level, model architecture, computational optimization, and deployment application. By analyzing the characteristics of industrial scenarios, domain knowledge based data augmentation methods, lightweight model pruning strategies, distributed training acceleration schemes, and edge intelligence deployment frameworks have been proposed, providing new ideas for improving the performance and application effectiveness of industrial large-scale models.

    参考文献
    相似文献
    引证文献
引用本文

安士才.人工智能视域下工业大模型优化的路径研究[J].移动信息,2025,47(2):286-288.
[author_e n_name]. Research on the Path of Industrial Model Optimization from the Perspective of Artificial Intelligence[J].,2025,47(2):286-288.

复制
分享
文章指标
  • 点击次数:
  • 下载次数:
  • HTML阅读次数:
  • 引用次数:
历史
  • 收稿日期:
  • 最后修改日期:
  • 录用日期:
  • 在线发布日期: 2025-03-19
  • 出版日期:
文章二维码
关闭